

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS DIRETORIA DE GRADUAÇÃO

Plano de Ensino Campus: II – Belo Horizonte

DISCIPLINA: Mecânica e Resistência dos Materiais **CÓDIGO**: DAEC.001

VALIDADE: Início: 1º sem/2019 Término:

Carga Horária: Total: 90 horas/aula Semanal: 06 aulas Créditos: 06

Modalidade: Teórica

Classificação do Conteúdo pelas DCN: Profissional

Departamento/Coordenação: Departamento de Engenharia Mecânica

Professor (a): Cristina Almeida Magalhães

Ementa:

Estática e centro de gravidade dos corpos rígidos. Momento de inércia. Sistemas reticulares planos: Vigas e treliças. Tensões e deformações em estruturas: tração, compressão, cisalhamento, flexão, flambagem, torção. Propriedades mecânicas dos materiais. Teoria da resistência. Morfologia das estruturas e deformações frente ao carregamento e às solicitações de diferentes naturezas.

Cursos	Período	Eixo	Obrig.	Optativa
Engenharia Ambiental e Sanitária	5°	Tecnologia Ambiental	SIM	-

Departamento/Coordenação:

INTERDISCIPLINARIDADES

Pré-requisitos	Código
Cálculo II A	
Co-requisitos	
Disciplinas para as quais é pré-requisito	
Mecânica dos Solos	
Disciplinas para as quais é co-requisito	
-	

Obj	Objetivos: A disciplina devera possibilitar ao estudante		
1	Fornecer conhecimento teórico aos alunos para a definição e uso de materiais		
	em obras de engenharia.		
2	Identificar os tipos de solicitações e tensões existentes em estruturas.		
3	Dimensionar os elementos estruturais e ligações aos esforços de tração,		
	compressão, cisalhamento, flexão e torção.		
4	Estudar das propriedades mecânicas dos materiais dúcteis e frágeis.		
5	Estudar as tensões sofridas pelos elementos estruturais quando submetidos a		
	solicitações compostas.		
6	Avaliar os estados de tensão em condições de carregamento complexos.		
7	Avaliar critérios de ruptura para materiais frágeis e dúcteis		
8	Estabelecer a fundamentação teórica para o estudo da disciplina: Mecânica dos		
	Solos		

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS DIRETORIA DE GRADUAÇÃO

Plano de Ensino Campus: II – Belo Horizonte

Unidades de ensino		Carga-horária Horas/aula
1	Estática:	12
	Conceitos básicos da mecânica vetorial	
	Sistema de forças coplanares	
	Momento de uma força	
2	Equilíbrio dos corpos rígidos:	10
	Conceito de Corpo Rígido	
	Condições de Equilíbrio de um Corpo rígido	
	Equilíbrio de um Corpo Rígido em duas e três dimensões	
	Diagrama de Corpo Livre	
	Restrições ao Movimento de um Corpo Rígido - Apoios e	
_	Reações de Apoio	_
3	Tensões e deformações em estruturas: tração, compressão	8
	e cisalhamento:	
	Tensão Normal	
	Tensão Cisalhante	
	Tensão Admissível e Coeficiente de Segurança	
	Deformação Produzida por Cargas Axiais	•
4	Propriedades mecânicas dos materiais:	6
	Diagrama tensão x deformação	
	Materiais frágeis e dúcteis	
	Lei de Hooke: aplicações	
-	Efeito Poisson	6
5	Torção:	b
	Tensões em eixos circulares em regime elástico Deformações em eixos circulares em regime elástico	
6	Flexão:	16
	Propriedades geométricas de figuras planas: Momento de	10
	inércia, momento estático e centro de gravidade.	
	Diagramas de momentos fletores e forças cortantes em vigas	
	isostáticas	
	Tensão normal em barras retas submetidas à flexão pura	
	Tensão normal e de cisalhamento em barras retas submetidas	
	à flexão simples	
	Fluxo de cisalhamento. Aplicações a soldas, parafusos e	
	pregos	
7	Carregamento Composto:	10
	Diagramas de forças e momentos internos.	
	Solicitações compostas por carregamento axial, torção e flexão.	
8	Análise de tensões:	14
	Estado geral de tensões	
	Estado plano de tensões	
	Tensões e planos principais	
	Tensão de cisalhamento máxima	

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS DIRETORIA DE GRADUAÇÃO

Plano de Ensino Campus: II – Belo Horizonte

	Círculo de Mohr para estado plano de tensões Círculo de Mohr aplicado à análise tridimensional de tensões Critérios de ruptura para materiais dúcteis e frágeis	
9	Flambagem de Colunas	8
	Total	90

Bib	Bibliografia Básica		
1	HIBBELER, R. C. Resistência dos materiais. São Paulo: Pearson Education do		
	Brasil, c2010. xiv, 7a Ed. 637 p. ISBN 9788576053736		
2	BEER, Ferdinand Pierre et al. Mecânica dos materiais. Porto Alegre: AMGH,		
	2011. xix, 799 p. ISBN 9788563308238		
3	HIBBELER, R. C. Estática: mecânica para engenharia. 12. ed. São Paulo:		
	Pearson Prentice Hall, c2011. xiv, 512 p. ISBN 9788576058151		

Rihl	liografia Complementar
1	TIMOSHENKO, Stephen P.; GERE, James E. Mecânica dos sólidos: volume
	1. Rio de Janeiro: LTC, 1983. 256 p. ISBN 8521602472.
2	NASH, William Arthur, Resistência dos Materiais . São Paulo, Editora
	McGraw- Hill, 1990.
3	MERIAM, J. L. e KRAIGE, L. G., Mecânica - Estática, 5a edição, Rio de
	Janeiro: editora LTC, 2004;
4	TIMOSHENKO, Stephen P.; GERE, James E. Mecânica dos sólidos: volume
	2. Rio de Janeiro: LTC, 1983.
5	Nash, William Resistência dos materiais. São Paulo: McGraw- Hill, 1980.